martes, 25 de octubre de 2011

Historia

La historia de la trigonometría comienza con los Babilonios y los Egipcios. Estos últimos establecieron la medida de los ángulos en grados, minutos y segundos. Sin embargo, en los tiempos de la Grecia clasica, en el siglo II a.C. el astrónomo Hiparco de nicea construyó una tabla de cuerdas para resolver triángulos. Comenzó con un ángulo de 71° y yendo hasta 180° con incrementos de 71°, la tabla daba la longitud de la cuerda delimitada por los lados del ángulo central dado que corta a una circunferencia de radio r. No se sabe el valor que Hiparco utilizó para r.
300 años después, el astrónomo Tolomeo utilizó r = 60, pues los griegos adoptaron el sistema numérico (base 60) de los babilonios.
Durante muchos siglos, la trigonometría de Tolomeo fue la introducción básica para los astrónomos. El libro de astronomía el Almagesto escrito por él, también tenía una tabla de cuerdas junto con la explicación de su método para compilarla, y a lo largo del libro dio ejemplos de cómo utilizar la tabla para calcular los elementos desconocidos de un triángulo a partir de los conocidos. El Teorema de Manelao utilizado para resolver triángulos esféricos fue autoría de Tolomeo
Al mismo tiempo, los astrónomos de la India habían desarrollado también un sistema trigonométrico basado en la función seno en vez de cuerdas como los griegos. Esta función seno, era la longitud del lado opuesto a un ángulo en un triangulo rectángulo de hipotenusa dada Los matemáticos indues utilizaron diversos valores para ésta en sus tablas.
A finales del siglo VIII los astrónomos Árabes trabajaron con la función seno y a finales del siglo X ya habían completado la función seno y las otras cinco funciones. También descubrieron y demostraron teoremas fundamentales de la trigonometría tanto para triángulos planos como esféricos. Los matemáticos sugirieron el uso del valor r = 1 en vez de r = 60, y esto dio lugar a los valores modernos de las funciones trigonométricas
El occidente latino se familiarizó con la trigonometría Árabe a través de traducciones de libros de astronomía arábigos, que comenzaron a aparecer en el siglo XII. El primer trabajo importante en esta materia en Europa fue escrito por el matemático y astrónomo alemán johhan Muller, llamadoReigimontano
A principios del siglo XVII, el matemático John Napier inventó los logaritmos y gracias a esto los cálculos trigonométricos recibieron un gran empuje.
A mediados del siglo XVII Isaac Newton inventó el cálculo diferencial e integral. Uno de los fundamentos del trabajo de Newton fue la representación de muchas funciones matematicas utilizando series infinitas de potencias de la variable x. Newton encontró la serie para el sen x y series similares para el cos x y la tg x. Con la invención del cálculo las funciones trigonométricas fueron incorporadas al análisis, donde todavía hoy desempeñan un importante papel tanto en las matemáticas puras como en las aplicadas.
Por último, en el siglo XVIII, el matemático Leonhard Euler demostró que las propiedades de la trigonometría eran producto de la aritmética de los números complejos y además definió las funciones trigonométricas utilizando expresiones con exponenciales de números complejos.

Archivo:Plimpton 322.jpg


La historia de las identides. Los elementos de Euclides, que datan del siglo III a. c, contienen ya una aproximación geométrica de la generalización del teorema de pitagoras las proposiciones 12 y 13 del libro II, tratan separadamente el caso de un triangulo obtusangulo y el de untriangulo actusangulo La formulación de la época es arcaica ya que la ausencia de funciones trigonometricas y del algebraobligó a razonar en términos de diferencias de áreas. Por eso, la proposición 12 utiliza estos términos:
«En los triángulos obtusángulos, el cuadrado del lado opuesto al ángulo obtuso es mayor que los cuadrados de los lados que comprenden el ángulo obtuso en dos veces el rectángulo comprendido por un lado de los del ángulo obtuso sobre el que cae la perpendicular y la recta exterior cortada por la perpendicular, hasta el ángulo obtuso.»
Euclides, Elementos.


Siendo ABC el triángulo, cuyo ángulo obtuso está en C, y BH la altura respecto del vértice B (cf. Fig. 2 contigua), la notación moderna permite formular el enunciado así:
AB^2 = CA^2 + CB^2 + 2\ CA\ CH










Identidades trigonometricas


 \tan{x} = \frac {\operatorname{sen}{x}} {\cos{x}} \qquad \cot{x} = \frac{1} {\tan{x}} = \frac{\cos{x}}{\operatorname{sen}{x}}
\sec{x} = \frac{1} {\cos{x}} \qquad \csc{x}= \frac{1}{\operatorname{sen}{x}}
Las identidades trigonométricas son igualdades que involucran funciones trigonométricas. Estas identidades son siempre útiles para cuando necesitamos simplificar expresiones que tienen incluidas funciones trigonométricas, cualesquiera que sean los valores que se asignen a los ángulos para los cuales están definidas estas razones.Las identidades trigonométricas nos permiten plantear una misma expresión de diferentes formas. Para simplificar expresiones algebraicas, usamos la factorización, denominadores comunes, etc. Pero para simplificar expresiones trigonométricas utilizaremos estas técnicas en conjunto con las identidades trigonométricas.
Antes de comenzar a ver las diferentes identidades trigonométricas, debemos conocer algunos términos que usaremos bastante en trigonometría, que son las tres funciones más importantes dentro de esta. El coseno de un ángulo en un triángulo rectángulo se define como la razón entre el cateto adyacente y la hipotenusa:
Otra función que utilizaremos en trigonometría es “seno”. Definiremos seno como la razón entre el cateto opuesto y la hipotenusa en un triángulo rectángulo:
Mientras tanto la palabra tangente en matemática puede que tenga dos significados distintos. En geometría se utiliza el término de recta tangente, pero a nosotros en trigonometría nos interesa otro término que es el de tangente de un ángulo, el cual es la relación entre los catetos de un triángulo rectángulo , lo mimo que decir que es el valor numérico que resulta de dividir la longitud del cateto opuesto entre la del cateto adyacente al ángulo.
Las siguientes identidades se cumplen para cualquier ángulo en el cual el denominador no sea cero. Estas son identidades recíprocas:
A partir de las relaciones pitagóricas es posible encontrar otras identidades y demostrar algunas identidades trigonométricas. Mediante estas relaciones si conocemos las medidas de los catetos de un triángulo rectángulo podemos calcular la medida de la hipotenusa (lado opuesto al ángulo recto) y si conocemos la medida de la hipotenusa y la de un cateto podemos calcular la medida del otro cateto. Entonces diremos que el teorema de Pitágoras es un teorema que se aplica únicamente a triángulos rectángulos, y nos sirve para obtener un lado o la hipotenusa de un triángulo, si es que se conocen los otros dos. Las identidades de relaciones pitagóricas son las siguientes:
De acuerdo al teorema de pitágoras :
Ahora veremos algunos ejemplos. Como primer ejemplo verificaremos la siguiente identidad:
Obtendremos la solución utilizando las identidades recíprocas:
Observemos también el siguiente ejemplo, en el cual verificaremos otra identidad:
Su solución :
Otra de las identidades trigonométricas sería la de división:
Las siguientes identidades serían las de suma y diferencia de dos ángulos:
Tenemos también las identidades de suma y diferencia del seno y coseno de dos ángulos, aquí las tenemos:
Identidad trigonométrica de producto del seno y el coseno de dos ángulos:
Identidades trigonométricas de ángulo doble:
Identidades trigonométricas de mitad de ángulo:
Por último observaremos algunas otras identidades trigonométricas :

Ejemplos


1identidad
identidad
identidad

2identidad
identidad
identidad

3identidad
identidad

4identidad
identidad

5identidad
identidad

6identidad
identidad

7identidad
identidad
identidad


Ejercicios De Aplicacion






  1. MAS:

1ecuación
ecuación
ecuación
ecuación

2ecuación
ecuación
ecuación
ecuación

3ecuación
ecuación
ecuación
ecuación
ecuación
ecuación
ecuación

4ecuación
ecuación
ecuación
ecuación
ecuación

5ecuación
ecuación
ecuación
ecuación
ecuación

6ecuación
ecuación
ecuación
ecuación
ecuación